RALDH-independent generation of retinoic acid during vertebrate embryogenesis by CYP1B1.
نویسندگان
چکیده
Several independent lines of evidence have revealed an instructive role for retinoic acid (RA) signalling in the establishment of normal pattern and cellular specification of the vertebrate embryo. Molecular analyses have previously identified the major RA-synthesising (RALDH1-3) and RA-degrading (CYP26A-C1) enzymes as well as other components involved in RA processing (e.g. CRABP). Although the majority of the early effects of RA can be attributed to the activity of RALDH2, many other effects are suggestive of the presence of an as yet unidentified RA source. Here we describe the identification, expression, biochemistry and functional analysis of CYP1B1, a member of the cytochrome p450 family of mono-oxygenases, and provide evidence that it contributes to RA synthesis during embryonic patterning. We present in vitro biochemical data demonstrating that this enzyme can generate both all-trans-retinal (t-RAL) and all-trans-retinoic acid (t-RA) from the precursor all-trans-retinol (t-ROH), but unlike the CYP26s, CYP1B1 cannot degrade t-RA. In particular, we focussed on the capacity of CYP1B1 to regulate the molecular mechanisms associated with dorsoventral patterning of the neural tube and acquisition of motor neuron progenitor domain identity. Concordant with its sites of expression and biochemistry, data are presented demonstrating that CYP1B1 is capable of eliciting responses that are consistent with the production of RA. Taken together, we propose that these data provide strong support for CYP1B1 being one of the RALDH-independent components by which embryos direct RA-mediated patterning.
منابع مشابه
Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development
Retinaldehyde dehydrogenase type 2 (RALDH-2) was identified as a major retinoic acid generating enzyme in the early embryo. Here we report the expression domains of the RALDH-2 gene during mouse embryogenesis, which are likely to indicate regions of endogenous retinoic acid (RA) synthesis. During early gastrulation, RALDH-2 is expressed in the mesoderm adjacent to the node and primitive streak....
متن کاملImmunomodulation by Bifidobacterium infantis 35624 in the Murine Lamina Propria Requires Retinoic Acid-Dependent and Independent Mechanisms
Appropriate dendritic cell processing of the microbiota promotes intestinal homeostasis and protects against aberrant inflammatory responses. Mucosal CD103(+) dendritic cells are able to produce retinoic acid from retinal, however their role in vivo and how they are influenced by specific microbial species has been poorly described. Bifidobacterium infantis 35624 (B. infantis) feeding to mice r...
متن کاملRDH10 Oxidation of Vitamin A Is a Critical Control Step in Synthesis of Retinoic Acid during Mouse Embryogenesis
Retinoic Acid (RA) is a small lipophilic signaling molecule essential for embryonic development and adult tissue maintenance. Both an excess of RA and a deficiency of RA can cause pathogenic anomalies, hence it is critical to understand the mechanisms controlling the spatial and temporal distribution of RA. However, our current understanding of these processes remains incomplete. Vitamin A is m...
متن کاملProstaglandin E2 suppresses the differentiation of retinoic acid–producing dendritic cells in mice and humans
The production of retinoic acid (RA) by dendritic cells (DCs) is critical for the induction of gut-tropic immune responses by driving the expression of intestinal-specific homing receptors, such as α4β7 and CCR9, upon T and B cell activation. However, how RA production is regulated during DC development remains unclear. We describe an unexpected role for prostaglandin E2 (PGE2) as a negative re...
متن کاملRetinal dehydrogenase gene expression in stomach and small intestine of rats during postnatal development and in vitamin A deficiency.
Retinal dehydrogenase (RALDH) catalyzes the oxidation of retinal to all-trans and 9-cis retinoic acid, which function as ligands controlling RAR and RXR nuclear receptor-signaling pathways. We have recently shown the expression of RALDH transcript in the stomach and small intestine by reverse transcription polymerase chain reaction [Bhat, P.V., Labrecque J., Dumas, F., Lacroix, A. and Yoshida, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 134 7 شماره
صفحات -
تاریخ انتشار 2007